참고

[1] Schaeffer, R., Miranda, B., & Koyejo, S. (2023). Are emergent abilities of Large Language Models a mirage?. arXiv preprint arXiv:2304.15004.

[2] Wei, A., Haghtalab, N., & Steinhardt, J. (2023). Jailbroken: How does llm safety training fail?. arXiv preprint arXiv:2307.02483.

[3] Schick, T., Dwivedi-Yu, J., Dessi, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., ... & Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761.

[4] Hao, S., Liu, T., Wang, Z., & Hu, Z. (2023). ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings. arXiv preprint arXiv:2305.11554.

[5] Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized llms. arXiv preprint arXiv:2305.14314.

[6] Muennighoff, N., Rush, A. M., Barak, B., Scao, T. L., Piktus, A., Tazi, N., ... & Raffel, C. (2023). Scaling Data-Constrained Language Models. arXiv preprint arXiv:2305.16264.

[7] Wang, B., Chen, W., Pei, H., Xie, C., Kang, M., Zhang, C., ... & Li, B. (2023). DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models. arXiv preprint arXiv:2306.11698.

[8] Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C. D., & Finn, C. (2023). Direct preference optimization: Your language model is secretly a reward model. arXiv preprint arXiv:2305.18290.

[9] Xie, S. M., Pham, H., Dong, X., Du, N., Liu, H., Lu, Y., ... & Yu, A. W. (2023). DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining. arXiv preprint arXiv:2305.10429.

[10] Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., ... & Leahy, C. (2020). The pile: An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027.

[11] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., ... & Fiedel, N. (2023). Palm: Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240), 1-113.

[12] Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., ... & Cui, C. (2022, June). Glam: Efficient scaling of language models with mixture-of-experts. In International Conference on Machine Learning (pp. 5547-5569). PMLR.