- 참고
- [1] DOSHI, Akash, et al. Deep stock predictions. arXiv preprint arXiv:2006.04992, 2020.
[2] PAL, Soumyasundar, et al. RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting. arXiv preprint arXiv:2106.06064, 2021.
[3] CHEN, Yuzhou; SEGOVIA-DOMINGUEZ, Ignacio; GEL, Yulia R. Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting. arXiv preprint arXiv:2105.04100, 2021.
[4] Bai, L., Yao, L., Li, C., Wang, X., and Wang, C. Adaptive graph convolutional recurrent network for traf?c forecasting. In Proc. Adv. Neural Info. Process. Systems, 2020.
[5] CHEN, Xinshi; DAI, Hanjun; SONG, Le. Particle flow Bayes’ rule. In: International Conference on Machine Learning. PMLR, 2019. p. 1022-1031.
[6] CARLSSON, Gunnar; DE SILVA, Vin. Zigzag persistence. Foundations of computational mathematics, 2010, 10.4: 367-405.
[7] A gentle introduction to persistent homology. https://christian.bock.ml/posts/persistent_homology/